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Abstrac t

We study passive scalar transport by a stochastic traveling wave field in the

physically relevant limit where typical fluid velocities, Uo, are much smaller

than the typical group velocity, co, of the waves. We derive the diffusion

equation for the mean concentration field and compute the effective diffu-

sion constant, D, as a power series in the small parameter uo/co  for spatially

smooth velocity fields. What is unusual about this problem is that for ad-

vection by wave fields of this type the zeroth  order term vanishes, and the

main contribution comes at order (uo/co)2.  We use this to estimate D for

long internal gravity waves in a shallow rotating fluid, and for wind generated

surface gravity waves on deep water.

I. IhTTRODUCTION

Passive scalar transport by turbulent velocity fields has been a subject of interest to fluid

dynamicists for many years (Taylor, 1921; Kraichnan,  1970; Gawedzki  and Kupiainen, 1995;

Chertkov and Falkovich,  1996; Chertkov,  et al., 1996). The problem is of great importance

in ocean and atmosphere dynamics where the transport of heat, moisture, salt and bio-

geochemical  quantities has short term (weather) as well as long term (climate) implications.

Theories of passive scalar transport to date have focused mainly on the effects of randomly



moving eddies in vertical flows, as modelled, for example, by the NTavier-Stokes  equations

in two and three dimensions. However vertical motions are not the only type of multiscale

random velocity field capable of passive tracer transport. In the present work we consider

an alternative mechanism, namely wave-induced diffusion, which has long been suspected to

play a role in ocean dynamics. This class of random motions includes wind-generated surface

gravity waves on deep water, Rossby and long internal gravity waves [known as baroclinic

inertia-gravity waves] in rotating fluids, and other types of oscillating flows. These flows

tend to be only weakly nonlinear, and are then characterized by a well defined dispersion

law, u(k),  which concentrates their spectra on smfaces  in frequency-wavenumber space. A

crucial fact, as we shall see, is that the frequency spectra tend to have vanishing weight near

zero frequency.

According to Richardson’s empirical law (Richardson, 1926) [later derived by Batch-

elor (Batchelor, 1952) and supported by laboratory and field experiments in the

ocean (Richardson and Stomrnel,  1948; Stommel,  1949; Monin  and ~zmidov,  1981)], the

eddy diffusion coefficient D(L) decreases with decreasing eddy size, L, according to

D(L) = B#3L4~3, (1)

where 13 is a constant of order unity and e is the rate of energy transfer to large scales

(induced by the usual inverse cascade in two dimensions). This equation is then valid for

length scales larger than the energy input scale, Lin. For large scale oceanic motions, e is

of order 10-4cm2/s3. At scales below .Lin the kinetic energy spectrum is controlled by the

direct cascade of enstrophy (squared vorticity),  and one has in place of (1)

(2)

where En is the rate of enstophy

models of ocean circulation can

transfer to small scales. Present eddy-resolving numerical

use spatial grid sizes as small as 10km.  According to the

Richardson law, D(L), used in these models to account for “sub-grid” motions on scales

smaller than L, should then be of order 106cm2/s. For comparison, the molecular diffusion
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coefhcient  for clean water is of order 10-5cm2/s. One of the questions we address is, as L

is pushed ever lower, would the actual diffusion eventually approach the molecular diffusion

limit as eddies of all sizes are accounted for explicitly in an “ideal” numerical model? Or,

are there other significant contributions to D that must be accounted for? As we show in

the present work, wave induced diffusion, although usually small by comparison with eddy

induced transport, may well set a lower bound on turbulent diffusion in natural environ-

ments.

Our main result, equation (28), provides a very general, quantitatively accurate estimate

for the diffusion coefficient, valid for any linear or weakly nonlinear statistically isotropic

wave field (generalization to anisotropic situations is straightforward). The theory is then

applied to the case of oceanic baroclinic inertia-gravity waves (with length scales ranging

from 1()-loo()km) and deep water surface gravity waves (with length scales ranging from

l-300m).

II. PASSIVE SCALAR DYhTAMICS  AhTD STATISTICS

Our analysis begins from the standard passive scalar transport equation

aq
~ + v . Vq = Kv2q, (3)

where q(x, i) is the passive scalar (salinity, heat, phytoplankton, etc. ) concentration field,

V(X, t) is the advecting velocity field, which we take to be given with Gaussian statistics and

homogeneous two-point correlator

C(x – X’, t – t’) = (V(x,  t) “ V(x’,  t’)), (4)

and ~ is the microscopic diffusion constant which we shall take to be zero since it is much

smaller than the observed large scale diffusion constant due to v.

Since, in the absence of damping and strong nonlinear interactions between waves, travel-

ing wave fields have a well defined dispersion law u(k), the velocity field maybe decomposed

in the form (for convenience the dimension, d, of space is kept general until the end)
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V(x)t)= /$$ [t(lc)e-’-)’l’l  +C.c.] (5)

The spatio-temporal spectrum is therefore restricted to certain sur~aces  in (k, w) space. For

example, for inertia-gravity waves one has w(k) = ~m”, where the Coriolis  parameter

~ = 2~ sin(#)  (Q being the earth’s rotation frequency  and #J being the latitude), and c m
2m/s is the phase speed of sufficiently short wavelength baroclinic  inertia-gravity waves for

which the Coriolis  force is negligible. The amplitudes i(k) are taken to be independent

Gaussian random variables:

(t(k) ~ t“(k’)) = F(k)6(k - k’) (6)

where F(k) > 0 is real and physically is strongly peaked at some characteristic wavevector

kO, and decays fairly rapidly on either side. The Fourier transform of C(x, i) is given by

@(k, w) = F(k)6[w – u(k)] + F(–k)6[w + w(–k)] \ (7)

Nonlinear interactions between waves will broaden the delta functions here. One finds in

the case of inertia gravity waves, for example, a broadening corresponding to a nonlinear

decorrelation time of order 10-30 wave periods (Glazman, 1996 b). This will become impor-

tant for passive scalar correlations at separations less than 10-30 wavelengths, but is not

important for the diffusion constant.

Given the above characterization of the statistics of the velocity field, v, we would now

like to compute the statistics of the passive scalar field, q. This paper will be concerned with

deriving an equation of motion for the average, (q(x, t)).  We shall see that under certain

conditions a diffusion equation

;(9(%0) = Iw72(9(&q)) (8)

emerges. The main interest will be in estimates for D@ = limt+~  D(t).



III. RANTDOM WALK REPRESEATTATIOhT

The computations are based on the following random walk representation for

q(x,  t) (Piterbarg, 1997):

g(x, t) == qo[zx,t(o)], (9)

in which go(x) = g(x, t = O) is the initial passive scalar distribution. The Lagrangian

coordinate ZX,t(s) is freely advected by the flow and satisfies

dZx,t(s)
ds = V(zx,t(s), s), (lo)

with the boundary condition that ZX,t(i!)  = x. The subscripts on ZX,~(s)  therefore define

the unique fluid particle that passes through the point x at time t. The point from which

this particle started its motion at time zero is then ZX,f(0), and at time s this same particle

will be (or was) at point ZX,~(s).  The concentration at (x, t) is therefore determined by the

initial concentration at the point at time zero which evolves into (x, t) under the flow. This

equation may be written in the integral form

Zx,t(s) = X + ~’ ds’v(zx,t(s’),  S’).

Using the Fourier representation, go(x) = $ ddk(27r)-djO(k)  e-ik”x,  one then obtains

J(9(X, ~)) = ~d~jo(k)e-ikx-A(k,t)(27r)’

in which

A(k, t) = – ln(e-ik”(zx’’(o)  -x))

= ik “ Xo(i!) + ~ ~ a:j(t)~i~j  + o(~3).

*3

(11)

(12)

(13)

Here Xo(t) = (ZX,~(0)  – x) is a drift term. For unbiased flows, which we shall assume, this

term vanishes. Subscripts i,j = 1,. ... d label  the Cartesian components. The tensor ~ij is

given by
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aij(t) =  ([zx,t(o)  –  ‘]i[zx,t(o)  –  ‘Ij) –  ‘O,i(f)zo,j(i). (14)

For isotropic flows  one has ~ij(~) = ~(~)fijj  and ~(~) = j(lzx,t(o) – X12). This difiusion  term

represents therefore the mean square distance travelled by a Lagrangian particle in time t,

relative to any systematic drift. In general ~ij is not simply a multiple of the identity matrix.

However, it may always be diagonalized by an orthogonal transformation to yield a set of

principal axes whose eigenvalues  correspond to the (different) rates of diffusion along these

axes. This general case has important geophysical applications, for example to flows in the

~-plane (where latitudinal variations of the Coriolis  force are taken into account), but we

shall not pursue these here.

Equations (12), (13) and (14) immediately imply the validity of the diffusion equation

(8). Direct substitution then yields [in the isotropic case with xo(t) = O, and ignoring cubic

and higher order terms in the ki] the identification

ldu 1 t
/ ()D(q=jm=jo G s d s (15)

in which

G(s -i) = (v(zx,t(s),  s) o v(x, ~)) (16)

is the Lagrangian temporal correlation function, and is an even function of its argument.

Higher order terms in (13) represent corrections to diffusive behavior and become important

on shorter length scales. If qo(x) varies only on large length scales, do(k) will vanish strongly

for large k, and these terms may be ignored.

IV. SYSTEMATIC COMPUTATION OF DIFFUSION COEFFICIENTS

The aim now is to compute D(t) systematically. The computation is based on the exact

solution to the problem in which V(X, t) x v(O, t) is taken to be independent of the spatial

coordinate. Perturbation theory will then be performed about this limit. In this limit one

has G(t)  = Go(t)  where
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Go(s – i) == (v(x,s) . v(x, i)) == / ~S(u)eiw(s-’), (17)

where

ddk
%)  =  ] (~myf @(k, W) (18)

is the frequency spectrum. Onetherefore obtains the Kubo-like formula (Kubo, 1963) for

the lowest order result

Because v(O, t) is assumed Gaussian, all higher order terms in k in (13) in fact vanish in

this limit.

Now, for the wave field problem of interest, we have the interesting result that I’(k,  u =

o) = O: the spectrum has negligible weight at zero frequency. Thus D$) N O, and the

process appears subdiffusive. In order to obtain finite estimates, slow spatial variation in

V(X, t) must therefore be allowed for. We perform a Taylor expansion

V(zx t(s), s) = V(x,  s) + {[zx,t(s)  – x] “ V}\’(x, s)

+ ;{[zx,t(s) – x] “ V}2V(X,  S) + . . . . (20)

This expansion is valid so long as ZX,t(s)  – x remains small compared to the typical length

scale of variation of V(X, i!), i.e. the correlation radius, Ro, of C(x, O). As seen above, time

scales  are governed by the decorrelation  time, TO, of Go(t) = C(O, t). Defining the mean

square velocity, I.& = (V
2), the perturbation expansion is valid in the limit uo << &/To  % %,

where ~ is the typical group velocity of the waves. In other words, one requires that the

typical particle velocity be much smaller than the typical wave velocity. ~From (11) one has

then

Zx,t(s) = x + J“ ds’v(x, s’)

+ ~sd$’~’’~s’’[v(x>s”)  o W’(%s’) + , (21)
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and therefore, substituting once more into (20),

V(zx,f(s),  s) = v(x, s) + J’ (is’[v(x, s’) . v’]v(x, s)

+js~s’]s’~s’’[v(x) s’’) ~l[v(x))~l~(x)s)s)
t t

+..., (22)

where the derivatives act on all spatial dependence to the right.

Equation (22) is now used to compute G(i!), with the result G(i) = Go(-t)  + GZ(t) + . . . .

with Go(t) as above and

G,(s – i) = ~s (h’~” tiS’’(V(X,  t) . [V(X, S“) . V]

x [V(x, s’) . v]v(x,  s)). (23)

It has been assumed in this expansion that all odd moments of v vanish. Wick’s theorem is

now used to express the four point average in terms of the product of two point averages.

The result is (we take here simply (~i~j) = ~6ijC; incompressibility and anisotropy effects

alter this, but can be handled straightforwardly)

G,(i)  = ; Jrn,o[V2  + V . V’] J’ dS ~’ dS’

x [C(O>  S’)c(x – X’, i – s) + dc(x, i)c(x’,  s – s’)

+ C(x’, S)c(x, t – s’)]

= ;Jt~sJa~s’[~c(o) s-s’)v’c(o>~)
+ C(o, S)v’c(o, i – s’)], (24)

where in the last equality it has been assumed that C(x, i!) has a quadratic maximum

at the spatial origin so that VC(O,  t) s O for all t. We may then immediately compute

W= jJmG2(0

= $~mdtfds&isJ[dGo(s  - s’)~o(t)

+ Go(s) Hc)(t – S’)], (25)
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where Go(t) and Ho(f,  ) s V2C(0, t) are both even functions of time, with Fourier transforms

~(w) and fi(w).  Let A(t) = Jm Go(s)ds  and B(-L) = Jtm 170(s)cZs,  then

D(2) = ;;A(O) /m B(i)cli  +
o :~wA(t)B(t)dt

J
w

= _m ~d:w, [7(0) - ?(W)][S(0) + (d - l)s((.d)]. (26)

Using (7), and assuming an isotropic frequency spectrum, one has the simple relation

ddk
—k2F(k,  w) = –k(w)’j(w),T(w)  =  –  / (zx)~ (27)

where k(u) is the inverse of the function u(k). For inertia gravity waves (see below) one

has simply k(u)2 = (LJ2 – f2)/c2.  Our final expression for D&l in the case of interest where

~(0)  = O is then

ml
KI dwd-lk(u)2.D(2) . ——-—S(hy.-w 2X 2d3 W’ (28)

To estimate orders of magnitude, it is useful to scale this expression using physical

quantities. Let -fO be a characteristic frequency of the system and let z = w/f. then be the

dimensionless frequency. Since u: = J(cJw/2m)s(u),  one may write

U2 w dx
s(w) = fs(z); /_m ~s(z)  = 1. (29)

Similarly, one writes k(w)2/w2  = K(z)2/c2,  where c is a characteristic phase or group velocity

and K(z) is dimensionless. For inertia gravity waves one has K(z)2 = 1 – Z-2 (with the

choice f. = f). The diffusion constant then may be expressed as

~g) = -&Bd,
.foc~

(30)

where all of the detailed spectral properties are characterized by the dimensionless quantity

J
Wdxd  —1

Bd = ——K(z)s(x)2.
-cm  21r 2d3 (31)

Since S(Z) has unit integral, roughly speaking l?~ will be small compared to unity if S(Z) is

very broad, and large compared to unity if it is strongly peaked.
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Putting in some rough numbers for order of magnitude estimates, for UO N 20cm/s, CO W

2m/s and I/fO N 1 day one obtains u~/~o  w 550m2/s. From (19), this would ordinarily be a

rough estimate for the diffusion constant itself. However in our case the leading contribution

is down by a factor (uo/~)2 w 0.01 from this, so that u~/foc~ w 5.5m2/s. Accurate estimates

for D~ then rely on estimates for 112.

V. APPLICATIONS TO INTERTIA-GRAVITY WAVES

Large scale oceanic and atmospheric motions (as occur in a thin layer of a rotating fluid)

satisfy the hydrostatic approximation for the pressure field which then leads to a simplified

set of equations known as the shallow water equations (LeBlond and Mysak, 1978; Gill,

1982). These equations contain, in addition to the usual horizontal vertical flows, in the

linear approximation, a set of oscillating solutions known as inertia-gravity (IG) or Poincar6

waves. While the time scale of the former is measured in weeks (being limited in principle

only be the size of the ocean), the period of IG waves actually has a lower bound determined

by the latitude. As described earlier, the dispersion relation in the f-plane approximation

(neglecting spatial variation of the Coriolis  parameter f) is given by

W2 = f2 + c2k2, (32)

where c is the (constant) wave phase speed in the absence of the earth’s rotation (known

as the Kelvin wave speed). Wave solutions with frequency smaller than f therefore do

not exist. This turns out to be a slight oversimplification: see below. Of main interest

in oceanography are IG waves occuring at the interface, known as the thermocline depth,

between two horizontal layers with slightly different densities. These long internal waves,

called baroclinic  inertia-gravity (BIG) waves, account for most of the energy in oceanic

motions with times scales less than one day. The corresponding amplitude of thermocline

depth oscillations may attain several tens of meters while the horizontal velocity scale

about 10cm/s. Being weakly to moderately nonlinear, BIG waves are characterized by

is

a
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broad frequency spectrum resulting from the Kolmogorov type cascades of wave energy and

wave action (Falkovich,  1992; Falkovich and Medvedev, 1992; Glazman, 1996a; Glazman,

1996 b). Among known causes of BIG waves in the ocean are the scattering of semi-diurnal

barotropic  tides by topographic features on the ocean floor, fluctuations c)f wind stress and

atmospheric pressure at the ocean surface, and amplification of internal waves by mesoscale-

eddy fields and shear flows (Fabrikant, 1991; Stepanyants  and Fabrikant, 1989; Troitskaya

and Fabrikant, 1989).

An experimental frequency spectrum of horizontal velocity fluctuations in the upper

ocean layer, based on data reported in (Fu, 1981), is illustrated in Fig. 1. Notice that the

main spectral peak actually spans the Coriolis  frequency, ~ (the second peak is due to the

semi-diurnal tide). This means that the modes dominating the spectrum are actually of

sufficiently long wavelength that the ~-plane  approximation is no longer valid: Evanescent

tails of lower frequency waves that exist at slightly smaller latitudes actually contribute

substantially to the spectrum. This has a very strong effect on estimates for the diffusion

constant as the spectral factor k(w) in (28) vanishes at f, thereby suppressing the integrand

in the region near the peak. In future work we will account for this effect properly by using

the ~-plane approximation [which allows linear variation of ~(y) = f(yO) +- ~(y – yO) with

latitude] to compute the dispersion relation. This will lead to a nonvanishing k(w) near

the peak, vastly increasing the result for D$l. Presently we can rigorously estimate only

the contribution from the isotropic short-scale range of the IG wave spectrum for which the

isotropic dispersion law (32) is valid. Only in this range is our main result (28) strictly

valid. We therefore reduce the range of integration to the interval (oJo, cm) with W. > f. The

spectrum plotted in Fig. 1 yields D~l ranging from 70cm2/s for W. = 1.05j to 50cm2/s for

W. = 1.5~.  As mentioned above, we anticipate that the actual D&) will be much greater

when the entire spectral peak is taken into account in the ~-plane approximation. A crude

estimate of the effect may be obtained by replacing k(u)/u  by max{k(w)/w,  l/c} in (28)

so that this coefficient retains the finite value l/c near f. Taking c to be the Kelvin wave

speed, and beginning the integration at the local minimum to the left of the spectral peak,
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we obtain the result 11~) N 1300cm2/s.

If the tidal peak (which is absent in many ocean regions) is neglected, observed

of BIG waves are in good agreement with theoretical spectra suggested in (Glazman,

In particular, the frequency spectrum of BIG waves is given

(z’ + 7)(Z2 + 1)
s(z) = aO z 113(z )  (z’ -  1)’/3’

in scaled form (29) by

spectra

1996 b).

(33)

valid for z > 1, where a. is the normalization required by (29). This form is actually not

formalizable as its integral diverges at z = 1, a result also due to the breakdown of the

j-plane  approximation. As explained earlier, we take S(Z) s O for z < 1 + 6, for various

values of 6 (see below). From the theory of BIG wave turbulence (Glazman,  1996 b), the

prefactor u~/fo  may also be written in the form

(34)

where ~ is again the flux of wave energy (or, equivalently, the energy ‘dissipation rate nor-

malized by the fluid mass density) R = c/f is the Rossby radius of deformation, and CY4 is

a dimensionless coefficient analogous to the Kolmogorov constant in fluid turbulence. We

then obtain DE) in the form

w (35)D(2) = @lSRSlSc~~

where the dimensionless coefficient is given by

B=~4 J
m # + 7)’(Z2 + 1)2(Z2 - 1)

144  1+6 #/3(~4 — 1)10/3  - (36)

Assuming a4 = 1, numerical integration yields B R 0.8 for 6 = 0.1. For the case c = 3m/s,

R = 30km, and c N 10-14 m2/s3  (relevant to the mid-latitude ocean region employed in

Fig. 1) one finds D&) H 34cm2/s, in rough agreement with the estimate above using the

experimental spectrum (though the latter contains the additional tidal peak).

The fact that the Rossby radius increases as the latitude decreases - exceeding 200km

near the equator – indicates a possible role of BIG waves as a factor in horizontal transport
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in tropical regions. In contrast, to the meso-scale  and large-scale eddies which can propagate

only westward, BIG waves can move in both westward and eastward directions and are hence

capable of eastwardly transporting the various tracers in these regions.

~71m APPLICATIONCJ To \~TIND.GENERATED SURFACE GRAVITY ~TAvECJ

Application of the theory to the case of wind-generated surface gravity waves on deep

water requires knowledge of the corresponding spectrum of water particle horizontal veloc-

ities given the measured spectrum of surface height variations, S~(w). This relationship

depends on the depth, z, below the surface and is given by

S(U; z) = 2f.d2Sq(w)e-2w’z/g. (37)

Theoretical (Zakharov and I?ilonenko, 1966; Phillips, 1977; Phillips, 1985) and empiri-

cal (Glazman, 1994) studies yield a family of surface height spectra which maybe represented

in the general form

SJL4)) = pg2(u/g)4’u-5+4’o(u/we), (38)

where U is the mean wind speed above the sea surface, g is the acceleration due to gravity,

W. = g/U( is the spectral peak frequency, ~ is the wave age defined as the ratio of the phase

speed of the waves at the spectral peak to the wind velocity U, El(w/uo) is a smoothed

step (Heaviside) function which imposes a smooth cutoff at frequencies below the spectral

peak, and ~ is a dimensionless Phillips constant which is a slowly decreasing function of the

wave age. Equation (38) with p = 1/4 reduces to the Zakharov-Filonenko spectrum which

is controlled by the direct inertial cascade of energy toward smaller scales (analogous to the

usual Kolmogorov  cascade in isotropic turbulence), and is then valid at scales smaller than

the driving scale. On the other hand the choice p = 1/3 corresponds to the inverse cascade

of wave action (Zakharov  and Zaslavskii, 1982) and is valid at scales larger than the driving

scale, including the high frequency side of the spectral peak. In general, in the absence of
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unambiguous inertial ranges, the exponent p = p(~) may be viewed as an effective exponent

that generally increases with wave age (Glazman, 1994; Glazman,  et aL, 1996). Notice that

because the wavelengths of interest are in the range l-300m, Coriolis  effects are negligible

and no latitude dependence occurs in (38)

In order to omit effects of smaller scale ripples influenced by surface tension and other

extraneous factors, a high frequency cutoff can be imposed in (38), thus forcing an expo-

nential decay at frequencies above those associated with the ‘(intrinsic microscale” of the

surface gravity range (Glazman and Weichman,  1989). However, for a finite depth z, the

velocity spectrum (37) experiences a sufficiently fast high frequency roll-off to make the use

of an intrinsic microscale unnecessary. Equations (37), (38) and the gravity wave dispersion

law W2 = gk allow one to estimate the diffusion coefficient based on (28). For a typical open

ocean case where U = 10m/s and ~ = 2, one finds the dependence of the diffusion constant

on depth as shown in Fig. 2. We conclude from this figure that within a few meters of the

ocean surface, surface gravity wave induced diffusion is of the same order of magnitude as

that caused by baroclinic inertia-gravity waves. However below 10m depths the effects of

surface gravity waves are negligible.

Wave-induced turbulent transport in the immediate sub-surface layer is of great geophys-

ical importance because the surface inhibits the growth of three-dimensional eddies which,

otherwise, would give rise to classical eddy-induced diffusion. Therefore, the only mechanism

competing with wave-induced diffusion in this region is molecular diffusion. While the above

estimate for D&J pertains to horizontal diffusion, the general theory we have developed is

equally valid for the vertical component of the full three-dimensional diffusion coefficient

tensor. Computation of this component would allow one to properly formulate the problem

of turbulent transport through the ocean surface. This will be pursued in a later publication.
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FIGURES

FIG. 1. Frequency spectrum of ocean currents measured at 34.9”N,  55°W in the North Atlantic

at a depth of 600m. The local ocean depth is 5506m. Units of frequency are cycles per hour (cph).

The figure has been replotted based on Fig. 2 of (Fu, 1981).

FIG. 2. Diffusion constant due to surface gravity waves near the ocean surface with wind speed

U = 10m/s and wave age f = 2.
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